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Results obtained in [l] are extended to embrance the problem of optimal stab- 
ilization of the position of equilibrium of a solid with a cavity containing a 

homogeneous, viscous incompressible fluid, with respect to a part of the gener- 
alized coordinates, generalized velocities and kinetic energy of the fluid. 

1. Let us consider a solid with a singly-connected cavity partly or completely fill- 

ed with a homogeneous, viscous incompressible fluid. Let qr, - . ., Qn (n d 6) 
denote the generalized coordinates of the system. We assume that the constraints im- 
posed on the system are time independent, and the system is acted upon by potential 
forces as well as certain additional forces of the type [2] 

Qi = i mii (q) wi (q1q.J 
j=l 

(1.1) 

where Wi denote the control functions. The surface tension is neglected. 
The equations of motion are written in the form [3] 

f 
d aT i?T (1.2) 

--_A 

dt aqi* aPi 
=(l++&t~w~ (i=l,...,n<6) 

j=l 

The latter equations should be supplmented by the Navier -Stokes and continuity equa- 
tions, and the corresponding boundary and initial conditions. 

Using the total energy of the system H = T + u as the Liapunov fUrKtiOn, we 

obtain 

II’ = - s E dz + i i mijwjqi’ 

z i=l j=l 

3 

E = 2P 
c eij2r 

i, j=l 

eij=+($+2) 

(1.3) 

Here v (q, us, vs) is the fluid velocity vector relative to the fixed coordinate system; 

W%+s is the moving coordinate system and in what follows u (U1r us, ug) denotes 
the fluid velocity vector in the latter system. 

We shall assume that [l, 41 
1) the equations of motion (1.2) admit, at wj = 0 % a particular solution q = q’ 
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= 0,v =o (the position of equilibrium): 
2) the potential energy U is positive-definite with respect to ql, . . . q, (IIL 

< n); moreover, by virtue of (1.3) the position of equilibrium is stable with respect 
to 91, . * -9 Pm, 41’1 * . *, qn’, T2 when wj = 0 (T, is the kinetic energy of the fluid); 

3) the coordinates 4m+rr - - s7 qn are angular (mod 2~)~ and all quantities app- 
earing in (1.2) as well as the function H , are 2n-periodic in qrn+xT . . .: 9r1 * 
It can also be assumed that Pm+] (1), . . ., h (1) are bounded when the motion is 
perturbed [4,5]; 

4) when wj = 0 3 there are no positions of equilibrium in the set u > 0 l 

Following [2], we formulate the problem (compare with [l]) of determining the 
controls wj = wjO ensuring the asymptotic stability of the positions of equlibrium 
q = q’ = O,V = owith respect to 41, . - ., qmp ql’, . . .rqn’r TZ and minimi- 

zing the functional 

(1.4) 

in which $ is a non-negative function to be determined and the quadratic form is 
a positive-definite function of the controls . 

We regard, as class K = (w (q , q’)} of control functions w (q , q’) the set of 

continuous functions of w (q , q’) satisfying the condition [l] 

wj = 0 when q1 = . . . = q,,, = qr’ = . . . = qn’ = 0 (j = 1, . . ., r) (1.5) 

Further, as in [4,6], we shall introduce certain assumptions concerning the character 
of the perturbed motions. 

Let us perform a continuous change of variables [S] 

h = h ($9 X2, X2), y = Y (Xl’ X2, X2), T = TV (Xl, X2, X2) 

write the equation of the side wall as Y (x1, x2, x3) = b0 = const and let the equati- 

on of free surface of the fluid be represented, for every w (q , q’) E K , in the form 

r - a0 = x (t, h, v), a, = const. 
We assume that by specifying, for every w (s, q’) E A r the following quantit- 

ies at the initial moment 2 = h 

%3 go’9 Ui (to, 219 X2, X2) = Cpi (xl7 X21 X2) (i = I, 2, 3)1 x tt13* h7 v, 

with div u = 0, the subsequent motion of the system is determined uniquely. 
Let the deviation V in every perturbed motion at any t > to >, 0 satisfy the con- 

dition [3] V > El,and let the following assumptions hold for every w (q, n’) E K: 

A. [4] In each perturbed motion 

II u II < M, II u’ II < M, I eij I < M, I eij’ I < A4 

1 aeij / 8X, 1 < M, 1 dui / dXj 1 < M (s, i, s = 1, 2, 3; M = const) 
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B. [4, S] The function x (t, h, Y) is continuous in J. and v uniformly in t >, 0, 
i.e. for every e > 0 there exists 6 (e) > 0 such that 1 h’ - h” 1 < 6, 1 v’ - y” 1 
< 6 implies 1 x (t, A’, Y) - 31 (t, h”, v”) 1 < e for all t 2 0. 

C. [4, S] Function H depends continuously on the initial conditions, i. e. for 

every e > 0, 6 > 0 there exists 6 (.a, 6) > 0 such that 

0 %I - 9: II < 6, II q,” - 9:’ II < 6, I (pi’ (Zp 9, z.9) - (pi” (21, 35, ZJ I < 6 
I ?c’ (0, h, Y) - XI (0, a, Y) I < 6 

implies 

1 a w [el, 9” LoI, UC iel, XI [en - H (4 [el, fir* [ei, d [el, XN [ei) I < e 

Let us consider the expression I31 I3 [H, 91 q’s V, ~1 = H’ + 0 in which o deno- 
tes the integrand function of (1.4) and the function H’ is determined by (1.3). 
Using the conditions B [H, q, q’,v, w”1 = 0 and B = [H, q, q’, v, WI > 0 for all 

WEK we can show, as in [a], that the optimal controls wjc and the function 
9 have the form (A,j is the algebraic complement of the element pkj) 

(1.6) 

(1.7) 

Let us assume that the quadratic form S is positive-definite with respect to 

(II’, * * .1 9n’. Taking into account the fact that ( compare with [2]) 

we conclude, with the help of [4], that the position of equilibrium q = q’ = 0, v = 
0 with Wj = Wj’, asymptotically stable with respect to 41, . . ., qrn, ql', . . ., qn', 

~~ and lim H ((1’ [tl, q” It], u” [t], x0 [t]) = 0 as t + 00. 

N o t e. Since E is a positive-definite quadratic form of the deformation rate 
tensor components, the first term in the formula for 9 (see (1.7))plays, with respect 

to the fluid, a part analogous to that of S with respect to the generalized velocities. 
Thus the function 9 in (1.4) characterizes the decay rate of both generalized vel- 
ocities and of the relative motion of the fluid. 

Let now wj* G K denote any control ensuring the asymptotic stability of the 

equilibrium q = q’ = 6, v = 0 relative to 1 VI, . . - . . ., qm, (II’, . f .I 91% 7 * T,. 
We shall show that 

fiz Ii (q* [11, q’* It], u+ [t], 3c* [t]) = 0 (1.6) 

Assume the opposite. The sequence of functions {X* its, A, Y]} is uniformly bounded 
and has the same order of continuity (see assumption B ) for any sequence r,--+m, 
therefore by virtue of the Arzell theorem we can separate from it a convergent sub- 
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sequence. Thus by virtue of the conditions 3) and (1.5), the following relations hold 
for some sequence tk - 00 : 

q* [t/$1 - q*, q** [&I - 0, u* [t/J 4 0, x* [&, h, VI + It* (h, V), w* It:;1 - 0 

Clearly the point (q*, q’ = 0, u = 0, x = x*, w = 0) is a position of equilibrium. 
II'= 0 at this point, therefore if the relation (1.8) does not hold, then IJ > 0 at 
this point and this contradicts the assumption 4). Applying now Theorem 2 of [l], we 
arrive at the following conclusion: the controls (1.6) solve the problem of optimal 
stabilization, with respect to ql, . . . . ., qm, ql’, . . ., qn’, T,,of the position of equ- 
ilibrium q = g’ = 0, v = 0 , under the criterion of control quality ( 1.4), (1.7). 

N o t e s. 1) The system in question has an infinite number of degrees of freedom. 

The proof of Theorem 2 of [l] is nevertheless still retained. 
2) The above result remains valid if the quadratic form S is positive-definite 

with respect to Q~‘, . . ., q,’ and the set [1,8] (H > 0) n (S = 0) contains no mot- 
ion of the whole system as a single rigid body, (necessary and sufficient conditions for 

such a motion to be present are given in the theorem in [2]). 

2. E x a m p 1 e 1 [ 9 1. Let us consider the problem of optimal stabilization 
of the motions of a dynamically symmetric satellite during which the mass center of 
the satellite rotates along a circular orbit about the center of attraction, and the axis 

of symmetry is perpendicular to the orbital plane of the mass center. We assume that 
the body of the satellite contains a cavity completely filled with a homogeneous vis- 

cous incompressible fluid. We retain the notation and formulation of the problem 
given in [9]. I.,et the controlling moment corresponding to the coordinate $I and 

minimizing the functional have the form (2.1) and (2.2) 

(2.1) 

(2.2) 

According to (1.7) and (1.8). we have 

(2.4) 

In the case when the body has no cavity filled with fluid, the results obtained in 
Sect. 1 coincide with the example given in [l]. To illustrate this we consider the 

problem of optimal stabilization of motions of a perfectly rigid, dynamically symmet- 
ric satellite during which the mass center moves along a circular orbit and the symme- 
try axis either points towards the center of attraction, or is perpendicular to the orbital 

plane of the mass center [9]. 
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E x a m p 1 e, 2. First we investigate the problem of optimal stabilization of the 

dynamic symmetry axis relative to the center of attraction (see Sect. 1 of [91). Let 

the control moments corresponding to the coordinates $i and +,z , and the mini- 

mizing functional, have the form 

Q,J,, = w+ QQ~= w+ (2.5) 
CQ 

J = s (21, + ~c’)wlz + @@‘w22) dt 
0 (2.6) 

In accordance with [l, 21 (compare with (1.9) and (1. lo), we obtain 

(2.7) 

(2.8) 

Next we turn our attention to the problem of optimal stabilization of the dynamic 

symmetry axis in the direction perpendicular to the oribital plane [9]; Let the control 

moments corresponding to the coordinates%v%and $1, and minimizing the functional, 
have the form 

Q,, = mlwl, Q,, = m2uz, Q+,, = m3w3 

00 

J = s (‘# + @“’ W12 + fic2) w2” + @@)w32) dt 

0 

(2.9) 

(2.10) 

Moreover we obtain as before 

WI 
ml o=-.-- @(I) 'P1.r 

m2 
w2O= - 21i(2) q2', 

(2.11) 

I+2 

~=48(')(FlY- (2.12) 

Examples 1 and 2 show that the stabilization rules used in [9] in the form of diss- 
ipative forces are optimal with respect to the functionals (2.2), (2.4), (2.6), (2. B), 
(2.10) and (2. X2), if f = rnNea / 48 is used as the Rayleigh function [9] in Example 
1, and analogous expressions for f in the problems dealt with in Example 2. 

The author thanks V. V. Rumiantsev for the interest shown. 
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